If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2=18
We move all terms to the left:
6t^2-(18)=0
a = 6; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·6·(-18)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*6}=\frac{0-12\sqrt{3}}{12} =-\frac{12\sqrt{3}}{12} =-\sqrt{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*6}=\frac{0+12\sqrt{3}}{12} =\frac{12\sqrt{3}}{12} =\sqrt{3} $
| (x+7)x=450 | | -5=56+b | | -6t-7=17=t= | | r–185=-150r= | | -2=56+b | | -36=y/9 | | 17=5k-2=k= | | -3=56+b | | 4b+3=-9=b= | | -x/2=46 | | 36+4x=30+6x | | (w+7)(w-7)=0 | | 2v+7=3=v= | | 30=v/2-15 | | -5=-14+b | | 183+-20+k=-15 | | -4=21+b | | 4v+9=61 | | 4(2v-5)-(v=2) | | -3=-14+b | | 3/2-x-2/3x=-11/6x | | 5(u+1)-I=3(u-1)+7 | | 5=-21+b | | -9y+5=-7+4y-4y | | -4.2=3.3+x/3 | | 9y+5=-7+4y-4y | | -4=-27+b | | 5y-2y+8=16 | | (w+4)=(3w-2) | | 2=24+b | | –4x–5=6x+15 | | 12-(12x)+12=-52 |